II B.Tech – IISem (IV Semester)

Manufacturing Processes - II

Course Objectives:

- Explain parameters in the metal cutting operation.
- Relate tool wear and tool life and the variables that control them.
- Calculate machining times for different machining processes.
- Teach various metal cutting processes. (Lathe, drilling, boring shaping, slotting, milling and grinding).
- Familiarize the principles of jigs and fixtures and types of clamping and work holding devices.

UNIT I:

8 Hours

LT

3 0 2

Material Removal Processes:

Metal Cutting: Single and multi-point cutting, orthogonal cutting, various force components, chip formation, tool wear and tool life, surface finish and integrity, machinability, cutting tool materials, cutting fluids, coatings.

Learning Outcomes:

At the end of the this unit, the student will be able to

- Describe cutting processes and variables. (L2)
- Classify various types of chips, cutting tool materials and cutting fluids. (L4)
- Calculate cutting force, speed and feed finding techniques during machining. (L5)

UNIT II:

10 Hours

Machining processes for round shapes:

Lathe and Lathe Operations: Principles of working, specifications, types of lathes, operations performed, work holders and tool holders. Taper turning, thread turning attachments for lathes. Machining time calculations. Turret and capstan lathes – Principleof working, collect chucks, other work holders – toolholding devices.

Boring and Boring Machines- Principles of working, specifications, types, and operations performed – toolholding devices –nomenclature of boring tools

Drilling and Drilling Machines: Principles of working, specifications, types, and operations performed – toolholding devices – nomenclature of twist drill.

Reaming and Reamers: Principles of working, specifications, types, and operations performed – toolholding devices – nomenclature of reamers.

Taping and Taps: Principles of working, specifications, types, and operations performed – toolholding

JNTUACEP

C

4

devices - nomenclature of taps.

Learning Outcomes:

At the end of this unit, the student will be able to

- List the specifications for various types of lathes. (L1)
- Determine cutting speeds for different machining operations. (L5)
- Identify parts of drilling, boring, reaming machines. (L3)

UNIT III:

8 Hours

8 Hours

Machining processes for other shapes:

Milling operations and Milling machines: Principles of working, specifications, classifications of milling machines, machining operations, types and geometry of milling cutters, methods of indexing, and accessories to milling machines, machining time calculations, gear hobing.

Shaping, Slotting and planning machines: Principles of working – principalparts, specification, classification, and operations performed, machining time calculations.

Gear Manufacturing:

Learning Outcomes:

At the end of this unit, the student will be able to

- Recognize the parts of milling, shaping, slotting and planning machine. (L3)
- Compare tool geometry for milling, shaping, slotting and planning operations. (L3)
- Calculate machining times. (L5)

UNIT IV:

Abrasive Machining:

Grinding and Grinding Machines: Grinding process, types of grinding machines, grinding process parameters, honing, lapping, other finishing processes.

Learning Outcomes:

- At the end of this unit, the student will be able to
- Understand the basic principles of abrasive processes. (L2)
- Explain the designation of the grinding wheel and the significance of the various codes. (L2)
- Classify different types of grinding machines and their applications. (L4)
- Assess the grinding process and variables that effect the operation. (L5)
- Estimate the time and power required for the grinding operation. (L5)
- Explain various types of abrasive processes such as honing and lapping for final finishing operation. (L2)

Department of Mechanical Engineering

y very 1 cdar JNTUACEP

Head of Mechnical Engineering Dept. NTU College of Engineering PULIVENDULA - 516 390

II B.Tech – IISem (IV Semester)

UNIT V:

8Hours

Jigs and Fixtures Principles of design of Jigs and fixtures and uses, 3-2-1 principle of location and clamping, classification of Jigs & Fixtures, types of clamping and work holding devices, typical examples of jigs and fixtures.

Learning Outcomes:

At the end of this unit, the student will be able to

- Classify various types of jigs and fixtures. (L4)
- Identify various types of work and tool holding devices. (L3)
- Explain the design principles of jigs and fixtures. (L2)
- Design a jig and fixture for a given application. (L6)

Text books:

- 1. P.N. Rao, Manufacturing Technology: Metal Cutting and Machine Tools, (Volume 2), 3/e,Tata McGraw-Hill Education, 2013
- 2. R.K. Jain and S.C. Gupta, Production Technology, 17/e, Khanna Publishers, 2012.

Reference books:

- 1. Kalpakzian S and Schmid SR, Manufacturing Engineering and Technology, 7/e, Pearson, 2018.
- 2. Milton C.Shaw, Metal Cutting Principles, 2/e, Oxford, 2012.
- 3. Hindustan Machine Tools, Production Technology, TMH, 2001.
- 4. V.K.Jain, Advanced Machining Process, 12/e, Allied Publications, 2010.
- 5. AB. Chattopadhyay, Machining and Machine Tools, 2/e, Wiley, 2017.
- 6. Halmi A Yousuf& Hassan, Machine Technology: Machine Tools and Operations, CRC Press Taylor and Francis Group, 2008.

Course Outcomes:

At the end of the course, the student will be able to

- Choose cutting processes and variables. (L3)
- Relate tool wear and tool life. (L1)
- Calculate the machining parameters for different machining processes. (L5)
- Identify methods to generate different types of surfaces. (L3)
- Explain work-holding requirements. (L2)
- Design jigs and fixtures. (L6)